p-group, metabelian, nilpotent (class 3), monomial
Aliases: C24.22D4, C24.170C23, C23⋊(C4⋊C4), C23⋊C4⋊4C4, (C2×D4).8Q8, C2.2C2≀C22, C23.4(C2×Q8), C22.33(C4×D4), (C22×C4).22D4, C23.6(C4○D4), C23.9D4⋊5C2, C23.556(C2×D4), C23.5(C22×C4), C23.8Q8⋊1C2, C22.88C22≀C2, (C23×C4).19C22, C22.11C24.4C2, C23.23D4.2C2, C2.2(C23.7D4), (C22×D4).14C22, C22.51(C22⋊Q8), C2.23(C23.8Q8), C22.47(C22.D4), (C2×C4)⋊(C4⋊C4), C22⋊C4⋊4(C2×C4), (C2×D4).68(C2×C4), (C2×C23⋊C4).5C2, C22.25(C2×C4⋊C4), (C2×C22⋊C4).9C22, SmallGroup(128,599)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C24.22D4
G = < a,b,c,d,e,f | a2=b2=c2=d2=e4=1, f2=c, eae-1=faf-1=ab=ba, ac=ca, ad=da, bc=cb, ebe-1=bd=db, bf=fb, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef-1=e-1 >
Subgroups: 436 in 187 conjugacy classes, 56 normal (20 characteristic)
C1, C2, C2, C4, C22, C22, C22, C2×C4, C2×C4, D4, C23, C23, C23, C42, C22⋊C4, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C22×C4, C2×D4, C2×D4, C24, C2.C42, C23⋊C4, C2×C22⋊C4, C2×C22⋊C4, C2×C22⋊C4, C2×C4⋊C4, C42⋊C2, C4×D4, C23×C4, C22×D4, C23.9D4, C23.8Q8, C23.23D4, C2×C23⋊C4, C22.11C24, C24.22D4
Quotients: C1, C2, C4, C22, C2×C4, D4, Q8, C23, C4⋊C4, C22×C4, C2×D4, C2×Q8, C4○D4, C2×C4⋊C4, C4×D4, C22≀C2, C22⋊Q8, C22.D4, C23.8Q8, C2≀C22, C23.7D4, C24.22D4
(2 12)(3 8)(4 31)(5 10)(7 29)(9 30)(13 22)(14 26)(15 17)(19 25)(20 23)(24 27)
(1 11)(2 29)(3 9)(4 31)(5 10)(6 32)(7 12)(8 30)(13 19)(14 23)(15 17)(16 21)(18 28)(20 26)(22 25)(24 27)
(1 11)(2 12)(3 9)(4 10)(5 31)(6 32)(7 29)(8 30)(13 19)(14 20)(15 17)(16 18)(21 28)(22 25)(23 26)(24 27)
(1 6)(2 7)(3 8)(4 5)(9 30)(10 31)(11 32)(12 29)(13 25)(14 26)(15 27)(16 28)(17 24)(18 21)(19 22)(20 23)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 15 11 17)(2 14 12 20)(3 13 9 19)(4 16 10 18)(5 28 31 21)(6 27 32 24)(7 26 29 23)(8 25 30 22)
G:=sub<Sym(32)| (2,12)(3,8)(4,31)(5,10)(7,29)(9,30)(13,22)(14,26)(15,17)(19,25)(20,23)(24,27), (1,11)(2,29)(3,9)(4,31)(5,10)(6,32)(7,12)(8,30)(13,19)(14,23)(15,17)(16,21)(18,28)(20,26)(22,25)(24,27), (1,11)(2,12)(3,9)(4,10)(5,31)(6,32)(7,29)(8,30)(13,19)(14,20)(15,17)(16,18)(21,28)(22,25)(23,26)(24,27), (1,6)(2,7)(3,8)(4,5)(9,30)(10,31)(11,32)(12,29)(13,25)(14,26)(15,27)(16,28)(17,24)(18,21)(19,22)(20,23), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,15,11,17)(2,14,12,20)(3,13,9,19)(4,16,10,18)(5,28,31,21)(6,27,32,24)(7,26,29,23)(8,25,30,22)>;
G:=Group( (2,12)(3,8)(4,31)(5,10)(7,29)(9,30)(13,22)(14,26)(15,17)(19,25)(20,23)(24,27), (1,11)(2,29)(3,9)(4,31)(5,10)(6,32)(7,12)(8,30)(13,19)(14,23)(15,17)(16,21)(18,28)(20,26)(22,25)(24,27), (1,11)(2,12)(3,9)(4,10)(5,31)(6,32)(7,29)(8,30)(13,19)(14,20)(15,17)(16,18)(21,28)(22,25)(23,26)(24,27), (1,6)(2,7)(3,8)(4,5)(9,30)(10,31)(11,32)(12,29)(13,25)(14,26)(15,27)(16,28)(17,24)(18,21)(19,22)(20,23), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,15,11,17)(2,14,12,20)(3,13,9,19)(4,16,10,18)(5,28,31,21)(6,27,32,24)(7,26,29,23)(8,25,30,22) );
G=PermutationGroup([[(2,12),(3,8),(4,31),(5,10),(7,29),(9,30),(13,22),(14,26),(15,17),(19,25),(20,23),(24,27)], [(1,11),(2,29),(3,9),(4,31),(5,10),(6,32),(7,12),(8,30),(13,19),(14,23),(15,17),(16,21),(18,28),(20,26),(22,25),(24,27)], [(1,11),(2,12),(3,9),(4,10),(5,31),(6,32),(7,29),(8,30),(13,19),(14,20),(15,17),(16,18),(21,28),(22,25),(23,26),(24,27)], [(1,6),(2,7),(3,8),(4,5),(9,30),(10,31),(11,32),(12,29),(13,25),(14,26),(15,27),(16,28),(17,24),(18,21),(19,22),(20,23)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,15,11,17),(2,14,12,20),(3,13,9,19),(4,16,10,18),(5,28,31,21),(6,27,32,24),(7,26,29,23),(8,25,30,22)]])
32 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | ··· | 2I | 2J | 2K | 4A | ··· | 4N | 4O | ··· | 4T |
order | 1 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
size | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 4 | 4 | 4 | ··· | 4 | 8 | ··· | 8 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | - | + | + | |||
image | C1 | C2 | C2 | C2 | C2 | C2 | C4 | D4 | Q8 | D4 | C4○D4 | C2≀C22 | C23.7D4 |
kernel | C24.22D4 | C23.9D4 | C23.8Q8 | C23.23D4 | C2×C23⋊C4 | C22.11C24 | C23⋊C4 | C22×C4 | C2×D4 | C24 | C23 | C2 | C2 |
# reps | 1 | 2 | 2 | 1 | 1 | 1 | 8 | 5 | 2 | 1 | 4 | 2 | 2 |
Matrix representation of C24.22D4 ►in GL6(𝔽5)
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 4 | 1 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 1 | 1 | 0 | 4 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
0 | 1 | 0 | 0 | 0 | 0 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 4 | 4 | 1 | 2 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 3 | 0 | 0 | 0 | 0 |
3 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 4 | 4 | 1 | 2 |
0 | 0 | 0 | 0 | 0 | 4 |
G:=sub<GL(6,GF(5))| [4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,4,0,0,0,0,4,1,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,1,0,0,0,1,0,1,0,0,0,0,4,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[0,4,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,4,4,0,0,0,4,1,0,0,0,0,0,2,0,1],[0,3,0,0,0,0,3,0,0,0,0,0,0,0,4,0,4,0,0,0,0,4,4,0,0,0,0,0,1,0,0,0,0,0,2,4] >;
C24.22D4 in GAP, Magma, Sage, TeX
C_2^4._{22}D_4
% in TeX
G:=Group("C2^4.22D4");
// GroupNames label
G:=SmallGroup(128,599);
// by ID
G=gap.SmallGroup(128,599);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,2,-2,224,141,232,422,521,1411]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=e^4=1,f^2=c,e*a*e^-1=f*a*f^-1=a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,e*b*e^-1=b*d=d*b,b*f=f*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=e^-1>;
// generators/relations